pH Neutralization Process Modeling Using GA Based Self-Organizing Polynomial Neural Network

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling pH Neutralization Process using Fuzzy Dynamic Neural units Approaches

In this paper, a new architecture combining dynamic neural units and fuzzy logic approaches is proposed for a complex chemical process modeling. Such processes need a particular care where the designer constructs the neural network, the fuzzy and the fuzzy neural network models which are very useful in black box modeling. The proposed architecture is specified to the pH chemical reactor due to ...

متن کامل

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Self-Organizing Polynomial Neural Network for Modelling Complex Hydrological Processes

Artificial neural networks (ANNs) have been used increasingly for modelling com-plex hydrological processes. In this paper, we present a self-organizing polynomial neural network (SOPNN) algorithm, which combines the theory of bio-cybernetic self-organizing polynomial (SOP) with the artificial neural network (ANN) approach. With the SOP feature of seeking the best combination of polynomial mode...

متن کامل

GA-based Feed-forward Self-organizing Neural Network Architecture and Its Applications for Multi-variable Nonlinear Process Systems

In this paper, we introduce the architecture of Genetic Algorithm (GA) based Feed-forward Polynomial Neural Networks (PNNs) and discuss a comprehensive design methodology. A conventional PNN consists of Polynomial Neurons, or nodes, located in several layers through a network growth process. In order to generate structurally optimized PNNs, a GA-based design procedure for each layer of the PNN ...

متن کامل

Optimization of self-organizing polynomial neural networks

0957-4174/$ see front matter 2013 Elsevier Ltd. A http://dx.doi.org/10.1016/j.eswa.2013.01.060 ⇑ Tel.: +385 1 4561191. E-mail address: [email protected] The main disadvantage of self-organizing polynomial neural networks (SOPNN) automatically structured and trained by the group method of data handling (GMDH) algorithm is a partial optimization of model weights as the GMDH algorithm optimizes on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Control and Automation

سال: 2017

ISSN: 2005-4297,2005-4297

DOI: 10.14257/ijca.2017.10.3.07